NCERT 12 Maths Matrices Chapter 3 – Exercise 3.3

ncert 12 maths chapter 3 ex 3.3 ques 1
ncert 12 maths chapter 3 ex 3.3 ans 1
ncert 12 maths chapter 3 ex 3.3 ques 2
ncert 12 maths chapter 3 ex 3.3 ans 2
ncert 12 maths chapter 3 ex 3.3 ans 2.1
ncert 12 maths chapter 3 ex 3.3 ans 2.2
ncert 12 maths chapter 3 ex 3.3 ques 3
ncert 12 maths chapter 3 ex 3.3 ans 3
ncert 12 maths chapter 3 ex 3.3 ans 3.1
ncert 12 maths chapter 3 ex 3.3 ans 3.2
ncert 12 maths chapter 3 ex 3.3 ques 4
ncert 12 maths chapter 3 ex 3.3 ques 5
ncert 12 maths chapter 3 ex 3.3 ans 5
ncert 12 maths chapter 3 ex 3.3 ans 5.1
ncert 12 maths chapter 3 ex 3.3 ques 6
ncert 12 maths chapter 3 ex 3.3 ans 6
ncert 12 maths chapter 3 ex 3.3 ans 6.1
ncert 12 maths chapter 3 ex 3.3 ques 7
ncert 12 maths chapter 3 ex 3.3 ans 7
ncert 12 maths chapter 3 ex 3.3 ques 8
ncert 12 maths chapter 3 ex 3.3 ans 8
ncert 12 maths chapter 3 ex 3.3 ans 8.1
ncert 12 maths chapter 3 ex 3.3 ques 9
ncert 12 maths chapter 3 ex 3.3 ans 9
ncert 12 maths chapter 3 ex 3.3 ans 9.1
ncert 12 maths chapter 3 ex 3.3 ques 10
ncert 12 maths chapter 3 ex 3.3 ans 10
ncert 12 maths chapter 3 ex 3.3 ans 10.1
ncert 12 maths chapter 3 ex 3.3 ans 10.2
ncert 12 maths chapter 3 ex 3.3 ans 10.3
ncert 12 maths chapter 3 ex 3.3 ans 10.4
ncert 12 maths chapter 3 ex 3.3 ans 10.5
ncert 12 maths chapter 3 ex 3.3 ans 10.6
ncert 12 maths chapter 3 ex 3.3 ans 10.7

Directions (Q. No. 11 and 12) Choose the correct answer in the following questions:
11. If A, B are symmetric matrices of same order, then AB-BA is a
(i) Skew-symmetric matrix
(ii) Symmetric matrix
(iii) Zero matrix
(iv) Identity matrix
Sol. Given, a and B are symmetric matrices
→ A’ = A and B’ = B
(AB – BA)’ = (AB)’ – (BA)’ [∵ (A-B)’ = A’ – B’]
= B’A’ – A’B’ [∵ (AB)’ = B’A’]
= BA – AB [∵ A’ = A and B’ = B]
= -(AB-BA) → (AB-BA)’ = -(AB-BA)
Thus, (AB-BA) is a skew symmetric matrix. So, correct option is (a)

ncert 12 maths chapter 3 ex 3.3 ques 12
ncert 12 maths chapter 3 ex 3.3 ans 12

Updated: October 18, 2020 — 4:06 pm

Leave a Reply

Your email address will not be published.